Henri becquerel biography breve coffee

Henri Becquerel

French physicist (–)

Antoine Henri Becquerel (;[3]French:[ɑ̃ʁibɛkʁɛl]; 15 December – 25 August ) was a French physicist who shared the Nobel Prize in Physics with Pierre and Marie Curie for his discovery of radioactivity.[4] The SI unit of radioactivity, the becquerel (Bq), is named after him.

Biography

Family and education

Becquerel was born in Paris, France, into a wealthy family which produced four generations of notable physicists, including Becquerel's grandfather (Antoine César Becquerel), father (Alexandre-Edmond Becquerel), and son (Jean Becquerel).[5] Henri started off his education by attending the Lycée Louis-le-Grand school, a prep school in Paris.[5] He studied engineering at the École Polytechnique and the École des Ponts et Chaussées.[6]

Career

In Becquerel's early career, he became the third in his family to occupy the physics chair at the Muséum National d'Histoire Naturelle in Later on in , Becquerel became chief engineer in the Department of Bridges and Highways before he started with his early experiments.

Becquerel's earliest works centered on the subject of his doctoral thesis: the plane polarization of light, with the phenomenon of phosphorescence and absorption of light by crystals.[7] Early in his career, Becquerel also studied the Earth's magnetic fields.[7] In , he was appointed as a professor at the École Polytechnique.[8]

Becquerel's discovery of spontaneous radioactivity is a famous example of serendipity, of how chance favors the prepared mind.

Becquerel had long been interested in phosphorescence, the emission of light of one color following the object's exposure to light of another color. In early , there was a wave of excitement following Wilhelm Conrad Röntgen's discovery of X-rays on 5 January.

Henri becquerel Capturing processes. Binding energy p—n ratio Drip line Island of stability Valley of stability Stable nuclide. To cite this article click here for a list of acceptable citing formats. Liquid drop Nuclear shell model Interacting boson model Ab initio.

During the experiment, Röntgen "found that the Crookes tubes he had been using to study cathode rays emitted a new kind of invisible ray that was capable of penetrating through black paper".[9] Becquerel learned of Röntgen's discovery during a meeting of the French Academy of Sciences on 20 January where his colleague Henri Poincaré read out Röntgen's preprint paper.[10]:&#;43&#; Becquerel "began looking for a connection between the phosphorescence he had already been investigating and the newly discovered x-rays"[9] of Röntgen, and thought that phosphorescent materials might emit penetrating X-ray-like radiation when illuminated by bright sunlight; he had various phosphorescent materials including some uranium salts for his experiments.[10]

Throughout the first weeks of February, Becquerel layered photographic plates with coins or other objects then wrapped this in thick black paper, placed phosphorescent materials on top, placed these in bright sun light for several hours.

The developed plate showed shadows of the objects. Already on 24 February he reported his first results. However, the 26 and 27 February were dark and overcast during the day, so Becquerel left his layered plates in a dark cabinet for these days. He nevertheless proceeded to develop the plates on 1 March and then made his astonishing discovery: the object shadows were just as distinct when left in the dark as when exposed to sunlight.

Both William Crookes and Becquerel's 18 year old son Jean witnessed the discovery.[10]:&#;46&#;

By May , after other experiments involving non-phosphorescent uranium salts, he arrived at the correct explanation, namely that the penetrating radiation came from the uranium itself, without any need for excitation by an external energy source.[11] There followed a period of intense research into radioactivity, including the determination that the element thorium is also radioactive and the discovery of additional radioactive elements polonium and radium by Marie Skłodowska-Curie and her husband Pierre Curie.

The intensive research of radioactivity led to Becquerel publishing seven papers on the subject in [6] Becquerel's other experiments allowed him to research more into radioactivity and figure out different aspects of the magnetic field when radiation is introduced into the magnetic field. "When different radioactive substances were put in the magnetic field, they deflected in different directions or not at all, showing that there were three classes of radioactivity: negative, positive, and electrically neutral."[12]

As often happens in science, radioactivity came close to being discovered nearly four decades earlier in , when Abel Niépce de Saint-Victor, who was investigating photography under Michel Eugène Chevreul, observed that uranium salts emitted radiation that could darken photographic emulsions.[13][14] By , Niepce de Saint-Victor realized that uranium salts produce "a radiation that is invisible to our eyes".[15] Niepce de Saint-Victor knew Edmond Becquerel, Henri Becquerel's father.

In , Edmond Becquerel published a book, La lumière: ses causes et ses effets (Light: Its causes and its effects). On page 50 of volume 2, Edmond noted that Niepce de Saint-Victor had observed that some objects that had been exposed to sunlight could expose photographic plates even in the dark.[16] Niepce further noted that on the one hand, the effect was diminished if an obstruction were placed between a photographic plate and the object that had been exposed to the sun, but " … d'un autre côté, l'augmentation d'effet quand la surface insolée est couverte de substances facilement altérables à la lumière, comme le nitrate d'urane … " ( on the other hand, the increase in the effect when the surface exposed to the sun is covered with substances that are easily altered by light, such as uranium nitrate ).[16]

Experiments

Describing them to the French Academy of Sciences on 27 February , he said:

One wraps a Lumière photographic plate with a bromide emulsion in two sheets of very thick black paper, such that the plate does not become clouded upon being exposed to the sun for a day.

One places on the sheet of paper, on the outside, a slab of the phosphorescent substance, and one exposes the whole to the sun for several hours. When one then develops the photographic plate, one recognizes that the silhouette of the phosphorescent substance appears in black on the negative. If one places between the phosphorescent substance and the paper a piece of money or a metal screen pierced with a cut-out design, one sees the image of these objects appear on the negative&#; One must conclude from these experiments that the phosphorescent substance in question emits rays which pass through the opaque paper and reduce silver salts.[17][18]

But further experiments led him to doubt and then abandon this hypothesis.

On 2 March he reported:

I will insist particularly upon the following fact, which seems to me quite important and beyond the phenomena which one could expect to observe: The same crystalline crusts [of potassium uranyl sulfate], arranged the same way with respect to the photographic plates, in the same conditions and through the same screens, but sheltered from the excitation of incident rays and kept in darkness, still produce the same photographic images.

Here is how I was led to make this observation: among the preceding experiments, some had been prepared on Wednesday the 26th and Thursday the 27th of February, and since the sun was out only intermittently on these days, I kept the apparatuses prepared and returned the cases to the darkness of a bureau drawer, leaving in place the crusts of the uranium salt.

Since the sun did not come out in the following days, I developed the photographic plates on the 1st of March, expecting to find the images very weak. Instead the silhouettes appeared with great intensity One hypothesis which presents itself to the mind naturally enough would be to suppose that these rays, whose effects have a great similarity to the effects produced by the rays studied by M.

Lenard and M. Röntgen, are invisible rays emitted by phosphorescence and persisting infinitely longer than the duration of the luminous rays emitted by these bodies. However, the present experiments, without being contrary to this hypothesis, do not warrant this conclusion. I hope that the experiments which I am pursuing at the moment will be able to bring some clarification to this new class of phenomena.[19][20]

Late career

Later in his life in , Becquerel measured the properties of beta particles, and he realized that they had the same measurements as high speed electrons leaving the nucleus.[6][21] In Becquerel made the discovery that radioactivity could be used for medicine.

Henri made this discovery when he left a piece of radium in his vest pocket and noticed that he had been burnt by it. This discovery led to the development of radiotherapy, which is now used to treat cancer.[6] In Becquerel was elected president of Académie des Sciences, but he died on 25 August , at the age of 55, in Le Croisic, France.[7] He died of a heart attack,[10]:&#;49&#; but it was reported that "he had developed serious burns on his skin, likely from the handling of radioactive materials."[22]

Honors and awards

In , Becquerel became a member of the Académie des Sciences.[6] In , Becquerel won the Rumford Medal for his discovery of the radioactivity of uranium and he awarded the title of an Officer of the Legion of Honour.[23][7] The Berlin-Brandenburg Academy of Sciences and Humanities awarded him the Helmholtz Medal in [24] In , he was elected as a member of the American Philosophical Society.[25] In , Henri shared a Nobel Prize in Physics with Pierre Curie and Marie Curie for the discovery of spontaneous radioactivity.[7] In , he was awarded the Barnard Medal by the U.S.

National Academy of Sciences.[26] In , Henri was elected Vice Chairman of the academy, and in , the year of his death, Becquerel was elected Permanent Secretary of the Académie des Sciences.[27] During his lifetime, Becquerel was honored with membership into the Accademia dei Lincei and the Royal Academy of Berlin.[7] Becquerel was elected a Foreign Member of the Royal Society (ForMemRS) in [1] Becquerel has been honored with being the namesake of many different scientific discoveries.

Henri becquerel biography breve coffee pronunciation Both William Crookes and Becquerel's 18 year old son Jean witnessed the discovery. Early in his career as a research physicist, Henri Becquerel developed laws of radiation of light from phosphorescent substances. Cite this article Sekiya, M. Brewer finished his undergraduate degree at CalTech in

The SI unit for radioactivity, the becquerel (Bq), is named after him.[28]

There is a crater named Becquerel on the Moon and also a crater named Becquerel on Mars.[29][30] The uranium-based mineral becquerelite was named after Henri.[31] Minor planet Becquerel is named in his honor.[32]

See also

References

  1. ^ ab"Fellows of the Royal Society".

    London: Royal Society. Archived from the original on 16 March

  2. ^"Becquerel, Henri, –". Retrieved 17 April
  3. ^"Becquerel". Random House Webster's Unabridged Dictionary.
  4. ^"The Discovery of Radioactivity". Berkeley Lab. Archived from the original on 15 June Retrieved 28 May
  5. ^ abHenri Becquerel.

    Henri becquerel biography breve coffee Then he prepared several crystalline samples with their one side covered by an aluminum plate. The SI unit for radioactivity, the becquerel Bq , is named after him. Nucleosynthesis and nuclear astrophysics. He died in Le Croisic, France on August 25,

    [S.l.]: Great Neck Publishing. ISBN&#;. OCLC&#;

  6. ^ abcde"Henri Becquerel". Nobel Prize. Retrieved 15 July
  7. ^ abcdefHenri Becquerel – Biographical.

    Antoine henri becquerel biography: Brewer finished his undergraduate degree at CalTech in His exploration of invisible but detectable emanations coming from within the atom itself led to a pivotal redefinition of the nature and structure of the atom and helped introduce a revolutionary era of atomic physics. Privacy policy. He conducted research by using not only uranium compounds, but by using pure uranium metal borrowed from Henri Moissan recipient of Nobel Prize for Chemistry , who was successful in producing uranium metal.

  8. ^Atomic Heritage Foundation. "Henri Becquerel – Nuclear Museum". Nuclear Museum. Retrieved 10 July
  9. ^ abTretkoff, Ernie (March ).

  10. Antoine henri becquerel biography
  11. Henri becquerel biography breve coffee drink
  12. Henri Becquerel - Wikipedia
  13. "American Physical Society".

  14. ^ abcdPais, Abraham (). Inward bound: of matter and forces in the physical world (Reprint&#;ed.). Oxford: Clarendon Press [u.a.] ISBN&#;.
  15. ^"This month in physics history March 1, Henri Becquerel discovers radioactivity".

    APS News. 17 (3). March

  16. ^"The Discovery of Radioactivity". Guide to the Nuclear Wallchart. 9 August
  17. ^Niepce de Saint-Victor () "Mémoire sur une nouvelle action de la lumière" (On a new action of light), Comptes rendus , vol. 45, pages –
  18. ^Niepce de Saint-Victor () "Deuxième mémoire sur une nouvelle action de la lumière"Archived 17 July at the Wayback Machine (Second memoir on a new action of light), Comptes rendus , vol.

    46, pages –

  19. ^Frog, Max. "The man who Discover the world". Retrieved 13 April
  20. ^ abEdmond Becquerel, La lumière: ses causes et ses effets, vol. 2 (Paris, France: F. Didot, ), page
  21. ^Henri Becquerel ().

    "Sur les radiations émises par phosphorescence". Comptes Rendus. : –

  22. ^Comptes Rendus: (), translated by Carmen Giunta. Accessed 02 March
  23. ^Henri Becquerel (). "Sur les radiations invisibles émises par les corps phosphorescents". Comptes Rendus.

    : –

  24. ^Comptes Rendus: – (), translated by Carmen Giunta. Accessed 02 March
  25. ^"Henri Becquerel – Biography, Facts and Pictures". Retrieved 6 March
  26. ^"Benchmarks: Henri Becquerel discovers radioactivity on February 26, ".

  27. Carousel
  28. Henri Becquerel - Biography, Experiments, Awards - Examples
  29. Henri Becquerel – Biographical - NobelPrize.org
  30. Henri Becquerel Biography, Age, Family, Career & Inventions ...
  31. EARTH Magazine. 5 January Retrieved 13 April

  32. ^"Rumford Medal". Retrieved 12 March
  33. ^"Henri Becquerel". Retrieved 25 April
  34. ^"APS Member History". Retrieved 19 May
  35. ^"Becquerel, Henri, –". Retrieved 12 March
  36. ^Sekiya, Masaru; Yamasaki, Michio (January ).

    "Antoine Henri Becquerel (–): a scientist who endeavored to discover natural radioactivity". Radiological Physics and Technology. 8 (1): 1–3. doi/sz. PMID&#; &#; via Springer Link.

  37. ^"BIPM – Becquerel". Archived from the original on 25 May Retrieved 13 April
  38. ^"Planetary Names: Crater, craters: Becquerel on Moon".

    Henri becquerel biography breve coffee company Two preceding generations of scientists gave Henri Becquerel the impetus to further illuminate the truth through scientific research. However, the 26 and 27 February were dark and overcast during the day, so Becquerel left his layered plates in a dark cabinet for these days. French physicist — Authority control databases.

    Archived from the original on 27 March Retrieved 13 April

  39. ^"Planetary Names: Crater, craters: Becquerel on Mars". Archived from the original on 14 April Retrieved 13 April
  40. ^"Becquerelite: Becquerelite mineral information and data". Retrieved 13 April
  41. ^"() Becquerel".

    Dictionary of Minor Planet Names. Springer. p.&#; doi/_ ISBN&#;.

External links